Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Mar Pollut Bull ; 185(Pt B): 114342, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2119988

ABSTRACT

To assess the exposure of beachgoers to viruses, a study on seawater, sand, and beach-stranded material was carried out, searching for human viruses, fecal indicator organisms, and total fungi. Moreover, for the first time, the genome persistence and infectivity of two model viruses was studied in laboratory-spiked sand and seawater samples during a one-week experiment. Viral genome was detected in 13.6 % of the environmental samples, but it was not infectious (Human Adenovirus - HAdV, and enterovirus). Norovirus and SARS-CoV-2 were not detected. The most contaminated samples were from sand and close to riverine discharges. In lab-scale experiments, the infectivity of HAdV5 decreased by ~1.5-Log10 in a week, the one of Human Coronavirus-229E disappeared in <3 h in sand. The genome of both viruses persisted throughout the experiment. Our results confirm viral contamination of the beach and suggest HAdV as an index pathogen for beach monitoring and quantitative risk assessment.


Subject(s)
COVID-19 , Norovirus , Humans , Sand , SARS-CoV-2 , Seawater
2.
J Neurovirol ; 27(2): 197-216, 2021 04.
Article in English | MEDLINE | ID: covidwho-1080993

ABSTRACT

The pandemic caused by SARS-CoV-2 has caused widespread infection and significant mortality across the globe. Combined virology perspective of SARS-CoV-2 with a deep-rooted understanding of pathophysiological and immunological processes underlying the clinical manifestations of COVID-19 is of prime importance. The characteristic symptom of COVID-19 is respiratory distress with diffused alveolar damage, but emerging evidence suggests COVID-19 might also have neurologic consequences. Dysregulated homeostasis in the lungs has proven to be fatal, but one cannot ignore that the inability to breathe might be due to defects in the respiratory control center of the brainstem. While the mechanism of pulmonary distress has been documented in the literature, awareness of neurological features and their pathophysiology is still in the nascent state. This review makes references to the neuro-immune axis and neuro-invasive potential of SARS-CoV and SARS-CoV2, as well as the prototypic H-CoV strains in human brains. Simultaneously, considerable discussion on relevant experimental evidence of mild to severe neurological manifestations of fellow neurotropic murine-ß-CoVs (m-CoVs) in the mouse model will help understand the underpinning mechanisms of Neuro-COVID. In this review, we have highlighted the neuroimmunopathological processes in murine CoVs. While MHV infection in mice and SARS-CoV-2 infection in humans share numerous parallels, there are critical differences in viral recognition and viral entry. These similarities are highlighted in this review, while differences have also been emphasized. Though CoV-2 Spike does not favorably interact with murine ACE2 receptor, modification of murine SARS-CoV2 binding domain or development of transgenic ACE-2 knock-in mice might help in mediating consequential infection and understanding human CoV2 pathogenesis in murine models. While a global animal model that can replicate all aspects of the human disease remains elusive, prior insights and further experiments with fellow m-ß-CoV-induced cause-effect experimental models and current human COVID-19 patients data may help to mitigate the SARS-CoV-2-induced multifactorial multi-organ failure.


Subject(s)
COVID-19/pathology , Disease Models, Animal , Murine hepatitis virus/pathogenicity , Neuroimmunomodulation/physiology , Animals , COVID-19/immunology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Humans , Mice , Murine hepatitis virus/immunology , SARS-CoV-2
3.
J Transl Med ; 18(1): 362, 2020 09 23.
Article in English | MEDLINE | ID: covidwho-788689

ABSTRACT

BACKGROUND: Since the first outbreak of SARS-CoV-2, the clinical characteristics of the Coronavirus Disease 2019 (COVID-19) have been progressively changed. Data reporting a viral intra-host and inter-host evolution favouring the appearance of mild SARS-CoV-2 strains are since being accumulating. To better understand the evolution of SARS-CoV-2 pathogenicity and its adaptation to the host, it is therefore crucial to investigate the genetic and phenotypic characteristics of SARS-CoV-2 strains circulating lately in the epidemic. METHODS: Nasopharyngeal swabs have been analyzed for viral load in the early (March 2020) and late (May 2020) phases of epidemic in Brescia, Italy. Isolation of SARS-CoV-2 from 2 high viral load specimens identified on March 9 (AP66) and on May 8 (GZ69) was performed on Vero E6 cells. Amount of virus released was assessed by quantitative PCR. Genotypic characterization of AP66 and GZ69 was performed by next generation sequencing followed by an in-depth in silico analysis of nucleotide mutations. RESULTS: The SARS-CoV-2 GZ69 strain, isolated in May from an asymptomatic healthcare worker, showed an unprecedented capability of replication in Vero E6 cells in the absence of any evident cytopathic effect. Vero E6 subculturing, up to passage 4, showed that SARS-CoV-2 GZ69 infection was as productive as the one sustained by the cytopathic strain AP66. Whole genome sequencing of the persistently replicating SARS-CoV-2 GZ69 has shown that this strain differs from the early AP66 variant in 9 nucleotide positions (C2939T; C3828T; G21784T; T21846C; T24631C; G28881A; G28882A; G28883C; G29810T) which lead to 6 non-synonymous substitutions spanning on ORF1ab (P892S; S1188L), S (K74N; I95T) and N (R203K, G204R) proteins. CONCLUSIONS: Identification of the peculiar SARS-CoV-2 GZ69 strain in the late Italian epidemic highlights the need to better characterize viral variants circulating among asymptomatic or paucisymptomatic individuals. The current approach could unravel the ways for future studies aimed at analyzing the selection process which favours viral mutations in the human host.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Genetic Variation , Pneumonia, Viral/virology , Amino Acid Substitution , Animals , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/epidemiology , Cytopathogenic Effect, Viral/genetics , Cytopathogenic Effect, Viral/physiology , Genome, Viral , Humans , Italy/epidemiology , Mutation , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , Polymorphism, Single Nucleotide , SARS-CoV-2 , Translational Research, Biomedical , Vero Cells , Viral Proteins/genetics , Viral Proteins/physiology , Virus Cultivation/methods , Virus Replication/genetics , Virus Replication/physiology , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL